RSDB: representative protein sequence databases have high information content
نویسندگان
چکیده
MOTIVATION Biological sequence databases are highly redundant for two main reasons: 1. various databanks keep redundant sequences with many identical and nearly identical sequences 2. natural sequences often have high sequence identities due to gene duplication. We wanted to know how many sequences can be removed before the databases start losing homology information. Can a database of sequences with mutual sequence identity of 50% or less provide us with the same amount of biological information as the original full database? RESULTS Comparisons of nine representative sequence databases (RSDB) derived from full protein databanks showed that the information content of sequence databases is not linearly proportional to its size. An RSDB reduced to mutual sequence identity of around 50% (RSDB50) was equivalent to the original full database in terms of the effectiveness of homology searching. It was a third of the full database size which resulted in a six times faster iterative profile searching. The RSDBs are produced at different granularity for efficient homology searching. AVAILABILITY All the RSDB files generated and the full analysis results are available through internet: ftp://ftp.ebi.ac. uk/pub/contrib/jong/RSDB/http://cyrah.e bi.ac.uk:1111/Proj/Bio/RSDB
منابع مشابه
Protein Databases
Proteins are sources of many peptides with diverse biological activity. Some of them are considered as valuable components of foods and drug targets with desired and designed biological activity. We are now entering an era rich in biological data in which the field of bioinformatics is poised to exploit this information in increasingly powerful ways. There are currently many databases all over ...
متن کاملThe Repetitive Sequence Database and Mining Putative Regulatory Elements in Gene Promoter Regions
At least 43% of the human genome is occupied by repetitive elements. Moreover, around 51% of the rice genome is occupied by repetitive elements. The analysis of repetitive elements reveals that repetitive elements in our genome may have been very important in the evolutionary genomics. The first part of this study is to describe a database of repetitive elements - RSDB. The RSDB database contai...
متن کاملRemoving near-neighbour redundancy from large protein sequence collections
MOTIVATION To maximize the chances of biological discovery, homology searching must use an up-to-date collection of sequences. However, the available sequence databases are growing rapidly and are partially redundant in content. This leads to increasing strain on CPU resources and decreasing density of first-hand annotation. RESULTS These problems are addressed by clustering closely similar s...
متن کاملClustering of highly homologous sequences to reduce the size of large protein databases
We present a fast and flexible program for clustering large protein databases at different sequence identity levels. It takes less than 2 h for the all-against-all sequence comparison and clustering of the non-redundant protein database of over 560,000 sequences on a high-end PC. The output database, including only the representative sequences, can be used for more efficient and sensitive datab...
متن کاملUniProt: the Universal Protein knowledgebase
To provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information, the Swiss-Prot, TrEMBL and PIR protein database activities have united to form the Universal Protein Knowledgebase (UniProt) consortium. Our mission is to provide a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2000